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Abstract—This paper presents a general class of passive macro-
modeling algorithm for multiport distributed interconnects. A new
theorem is described that specifies sufficient conditions for matrix-
rational approximation of exponential functions in order to gen-
erate a passive macromodel. A proof is given showing that the cur-
rently existing passive matrix-rational approximation of exponen-
tial functions is a subclass of the generic approach presented in this
paper. In addition, a technique to obtain a compact passive macro-
model with predetermined coefficients, based on near-optimal ap-
proximation, is presented. The proposed model can be easily in-
corporated with recently developed passive model-reduction tech-
niques.

Index Terms—Circuit simulation, distributed networks, high-
speed interconnects, transmission lines.

I. INTRODUCTION

T HE phenomenal growth in density, operating speeds, and
complexity of modern integrated circuits has made inter-

connect analysis a requirement for all state-of-the-art circuit
simulators. Interconnect effects such as ringing, signal delay,
distortion, attenuation, and crosstalk can severely degrade
signal integrity. Interconnections can be from various levels
of design hierarchy, such as on-chip, packaging structures,
multichip modules (MCMs), printed circuit boards (PCBs),
and backplanes. As the frequency of operation increases, the
length of the interconnects become a significant fraction of
the operating wavelength, and conventional lumped models
become inadequate in describing the interconnect performance
and transmission-line models become necessary. Skin and
proximity effects also become prominent at high frequencies
and distributed models with frequency-dependent parameters
may be needed [1]–[21].

The major difficulty usually encountered while linking the
distributed transmission-line models and nonlinear simulators
is the problem of mixed frequency/time. This is because
distributed elements are usually characterized in the frequency
domain where as nonlinear components such as drivers and
receivers are represented only in time domain. Several pub-
lications can be found in the literature that address this issue
[4]–[12], [16]–[20]. Approaches based on conventional lumped
segmentation of transmission lines provide a brute-force
solution to the problem of mixed frequency/time simulation.
However, these methods lead to large circuit matrices, rendering
the simulation inefficient. A passive transmission-line macro-
model based on a closed-form matrix-rational approximation of
an exponential function was proposed in [9]–[11]. The method
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uses the predetermined constants given by the closed-form ma-
trix-rational approximation and the per-unit-length parameters
to obtain ordinary differential equations analytically.

In this paper, a general class of passive macromodeling algo-
rithm for multiport distributed interconnects is presented. The
proposed approach is based on matrix-rational approximation
of exponential functions describing Telegrapher’s equations. A
new theorem is described, which specifies the necessary condi-
tions for any matrix-rational approximation of exponential func-
tions so as to generate a passive macromodel. Also, a proof
is given showing that the currently existing passive matrix-ra-
tional approximation techniques [9]–[11] for exponential func-
tions are a subclass of the generic approach presented in this
paper.

In addition, a technique is described to obtain a near-optimal
rational approximation for exponential functions. Near-optimal
approximations (such as minimax approximations) are able to
distribute the error more evenly in a given interval and, thus,
are able to achieve higher accuracy for equal orders when com-
pared to Padé approximations. The objective is to predetermine
the coefficients of optimal rational approximations for expo-
nential functions, while ensuring the coefficients do not vio-
late passivity when used to model transmission lines. These
coefficients can be computeda priori and are stored. This en-
ables the development of the transmission-line macromodel to
be formulated analytically in terms of known (stored) constants
and given per-unit-length parameters. Also, the proposed model
can be easily incorporated with the recently developed passive
model-reduction techniques [11], [19], [20]. Numerical exam-
ples are presented to demonstrate the validity and efficiency of
the proposed method.

The organization of this paper is as follows. A brief review
of transmission-line equations and macromodeling is given in
Section II. Development of the proposed generic distributed in-
terconnect model and a new theorem, as well as its proof, is
given in Section III. A new technique to obtain near-optimal
approximation for exponential functions is described in Sec-
tion IV. Section V provides a brief outline of the development
of the time-domain macromodel. Sections VI and VII provide
the numerical results and conclusions, respectively.

II. REVIEW OF TRANSMISSION-LINE MACROMODELING

Distributed interconnects are described by a set of partial dif-
ferential equations known as Telegrapher’s equations as fol-
lows:

(1)
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where , , , and
are the per-unit-length parameters of the transmission line and
are symmetric nonnegative definite [3], [6], and

represent the voltage and current vectors as a
function of position and time , and is the number coupled
lines. Equation (1) can be written in the Laplace domain as an
exponential matrix function as

(2)

where

(3)

represent the Laplace-domain terminal voltage and current
vectors of the multiconductor transmission line, andis the
length of the line.

Equation (2) does not have a direct representation in the time
domain, which makes it difficult to interface with nonlinear
simulators. Several publications can be found in the literature
to address this issue [4]–[12]. In [9]–[11], a closed-form
passive Padé model based on matrix-rational approximation is
suggested for modeling distributed transmission lines, which
provides an efficient means to address the issue of mixed
frequency/time simulation. The objective of this paper is to
present a general class of algorithm that can ensure passivity
of any type of matrix-rational approximation of exponential
functions. Also, we will show that the technique provided in
[9]–[11] is a subset of the general class of passive matrix-ra-
tional approximation presented in this paper.

III. D EVELOPMENT OF THEPROPOSEDPASSIVE DISTRIBUTED

INTERCONNECTMACROMODEL

A scalar exponential function can be approximated as a ra-
tional function as

(4)

where . If the scalar is replaced by the matrix , then
a rational matrix is obtained, which can be used to model trans-
mission lines described by (2) as

(5)

where , are polynomial matrices expressed as

(6)

Once the exponential matrix of (2) is represented as rational
functions, ordinary differential equations can be obtained. The
formulation of these equations are obtained analytically in terms
of predetermined constants (i.e., ) and the param-
eters. In the following section, we focus on the passivity issues
of the proposed macromodel.

A. Passivity Considerations

A linear -port network with an admittance matrix is
said to be passive, if and only if [22]: 1) for all
, where is the complex conjugate operator and 2) is a

positive-real matrix. That is the product
for all possible values of satisfying and for any

arbitrary value of .
The first condition implies that the coefficients of the ra-

tional function matrix generated by the proposed macromodel
must be real. The second condition implies, that must be
a positive-real matrix for all since

. The coefficients generated by (5) are real
values, therefore, the first condition of the passivity definition
is always satisfied. The task that remains is to ensure that the
rational approximation satisfies the second condition. For this
purpose, we present the following new theorem.

Theorem 1: Let the rational function approximation of be

(7)

where the polynomial is strictly Hurwitz. If the above
conditions are satisfied, then the rational matrix obtained by re-
placing the scalar with the matrix of (3) results in a passive
transmission-line macromodel.

The form of the resulting matrix-rational approximation can
be written as

(8)

or

(9)

where

(10a)

(10b)

(10c)

(10d)

(10e)

and ; .
The conditions on the scalar rational approximation repre-

sented by (7) in Theorem 1 essentially means the following.
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Fig. 1. Pole-zero distribution requirement for scalar rational approximation of
(7) in Theorem 1.

A strict Hurwitz polynomial [in this case, ] has its roots
only in the left half-plane. Hence, the zeros of scalar rational
approximation (7) are strictly on left half-plane. The poles of
the rational approximation (7), which is given by the roots of

, will all be on the right half-plane and are mirror im-
ages of zeros of (7). A graphical description of the pole-zero
distribution requirement for the scalar rational approximation
represented by (7) in Theorem 1 is shown in Fig. 1.

Proof of Theorem 1:The passivity proof associated with
the above theorem is provided in terms of the-parameter form
of (9). Using (9), we can write

(11)

where

(12)

and

(13a)

(13b)

To prove that and are positive real, the matrices are
written in terms of congruent transforms as

(14)

where

(15)

and is the unity matrix.

If the matrices and are
positive real, then and are positive real since they are ex-
pressed in terms of congruence transformations of positive-real
matrices. Thus, to prove the passivity of the macromodel, the
rational matrices and must be shown to be positive real.
For this purpose, we utilize the condition that the polynomial

of (7) is a strict Hurwitz polynomial. To identify if a
polynomial is a strict Hurwitz polynomial, it is separated into
even and odd parts as [23]

(16)

where and represent the even and odd func-
tions of , respectively. The rational function formed from
the even and odd polynomials can be expressed as a continued
fraction expansion. For example,if the order of the polynomial
is even,the continued fraction expansion becomes

...

(17)

The necessary and sufficient conditions for to be a strict
Hurwitz polynomial are the coefficients for
must be strictly positive. This is stated in Lemma 1.

Lemma 1:

• If is a strict Hurwitz polynomial, then the rational
function created using the even and odd polynomials of
(17) is an odd positive-real rational function [23].

Also, the following facts are used to prove that and
are positive real.

Lemma 2:

• The sum of two positive-real matrices of similar dimen-
sions is positive real [24].

Lemma 3:

• The inverse of a positive-real matrix (if the inverse exists),
is positive real [24].

It should be noted that and of (16) are
very similar in form to and of
(10b)–(10e). In fact, a relationship exists between the two
forms, and we will use this relation to prove that and
are positive-real functions. Let the rational-function formed by

and be expressed as a continued fraction

...

if Even
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Fig. 2. Coupled interconnect system.

...

if Odd

(18)

Since is a Hurwitz polynomial, the coefficients
are all positive values and the rational functions in

(18) are positive real (from Lemma 1). Next, we can also express
the matrix using a continued fraction expansion as

if Even

if Odd (19)

The coefficients in (19) are the same as in
(18). Since and are positive-real matrices (due to the fact
that the line parameters are nonnegative matrices [3], [6]),
in (19) is also positive real (from Lemmas 2 and 3).

Next, to prove that is positive real, a similar strategy
is followed. Let the rational function formed by and

be expressed as

...

if Odd

...

if Even

(20)

Fig. 3. Frequency response (Example 1).

Fig. 4. Time-domain response (Example 1).

Since is a Hurwitz polynomial, the coefficients
are all positive values and the rational functions in
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Fig. 5. Coupled interconnect system with nonlinear termination (Example 2).

(a) (c)

(b) (d)

Fig. 6. Frequency response. (a) Far-end line 1 (d = 5 cm). (b) Far-end line 9 (d = 5 cm). (c) Far-end line 1 (d = 15 cm). (d) Far-end line 9 (d = 15 cm).
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(a) (d)

(b) (e)

(c) (f)

Fig. 7. Time-domain response. (a) Ouput of inverter (d = 5 cm). (b) Far-end line 1 (d = 5 cm). (c) Far-end line 9 (d = 5 cm). (d) Output of inverter (d = 15

cm). (e) Far-end line 1 (d = 15 cm). (f) Far-end line 9 (d = 15 cm).

(20) are positive real (from Lemma 1). Next, we can also express
the matrix using a continued fraction expansion as

if Odd

if Even (21)

The coefficients in (21) are the same as in
(20). Since and are positive-real matrices, in (21) is also
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TABLE I
PERFORMANCECOMPARISON(EXAMPLE 2)

Fig. 8. Nonlinear circuit with frequency-dependent interconnect parameters
(Example 3).

positive real (from Lemmas 2 and 3). This completes the proof
of Theorem 1.

IV. CLASSES OFRATIONAL APPROXIMATIONS

Any rational-function approximation that satisfies the condi-
tions of Theorem 1 can be used to obtain passive macromodels
for transmission lines. In this section, we examine the existing
passive rational approximations for exponential functions. In
addition, we will present a technique to obtain near-optimal ra-
tional approximation for exponential functions.

A. Padé Rational Approximation

One method of obtaining the coefficients of (7) is to use a
Padé rational function.The Padé coefficients of can be ob-
tained using the following closed-form relation [9]–[11], [25]:

(22)

For the case when , the form of (22) is that of (7) and
the Hurwitz condition is satisfied [26].

B. Minimax Rational Approximation

A compact expression for (7) can be obtained using a min-
imax approximation. The goal is to minimize the error function
for a given interval such that

is minimum (23)

Fig. 9. Cross-sectional geometry and dimensions of microstrip (Example 3).

where is a given weight function, is the interval of
approximation, and and are the polynomials of the
rational function of order for the denominator and order
for the numerator.

Let the rational function of (7) be expressed in terms of prod-
ucts of factors written as

Even (24)

Odd

(25)

Equations (24) and (25) satisfy the form of (7). Imposing the
constraints that for all values of ensures that

is a strict Hurwitz polynomial. Replacing and
separating the rational function in terms of real and imaginary
parts, the minimax objective function can be written as

(26)

such that for all values of . The variables
, are the weight functions at the angular fre-

quency , where ranges from ;
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(a) (b)

Fig. 10. Frequency response: (a) at node V2 and (b) at node V3.

TABLE II
PER-UNIT-LENGTH PARAMETERS (EXAMPLE 3)

are the real and imaginary parts of the rational func-
tion.

The results obtained by the minimax approximation for
various orders and frequency ranges are then stored. Thus,
the macromodel can be formed analytically in terms of stored
(predetermined) constants and the per-unit-length parameters.

V. DEVELOPMENT OF THETIME-DOMAIN MACROMODEL

In this section, we will briefly review the technique to realize
the macromodel of (5) in terms of ordinary differential equations
[9]–[11]. The rational matrix of (8) can be represented in terms
of products of subsections described by the poles and zeros of

as follows:

(27)

for even values of , and

(28)

for odd values of . Here, represents the unity matrix and
are complex roots for , and is a real

root. The symbol represents the complex conjugate operation.
Converting each subsectionto the -parameters yields

(29)
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(a) (b)

(c)

Fig. 11. Time-domain response: (a) at node Vout (output of inverter), (b) at node V2, and (c) at node V3.

for the complex pole-zero subsection and

(30)

for the real pole subsection, where .
Since (29) and (30) is in the form of ration function, it can

be easily translated analytically to a set of ordinary differential
equations using similar techniques reported in [9]–[11].

A. Criteria for Selecting the Order of Approximation

Accuracy of the proposed model depends on the order of
the approximation ( ). Since all the elements in (10)
are computed using the predetermined coefficients and in a
closed-form manner, the required order ( ) can be easily
estimated using the following error criterion:

(31)

where is the predefined error tolerance. If the error tolerance
is not satisfied over the frequency range of interest, the order of
the macromodel can be increased.

VI. COMPUTATIONAL RESULTS

Example 1: The coupled interconnect configuration pro-
posed in [18] is shown in Fig. 2. The frequency response
obtained using the minimax and Padé macromodels (order 7/7)
are compared with the direct solution of telegrapher’s equations
(here onwards referred by the term “exact”) in Fig. 3. The Padé
approximation deviates from the exact response after 4 GHz,
while the minimax approximation deviates after 6 GHz. To
achieve the same frequency accuracy as the minimax approxi-
mation, order 10/10 is required by the Padé approximation. The
transient response corresponding to an input pulse with 0.1-ns
rise/fall times and a 0.8-ns pulsewidth is shown in Fig. 4. Both
the minimax approximation and inverse fast Fourier transform
(IFFT) response match.

Example 2: A distributed interconnect network with nine
coupled lines (Fig. 5) is analyzed using the proposed technique.
Two different cases of interconnect lengthare considered,
i.e., 5 and 15 cm. The frequency response of the linear sub-
network is matched up to 8 GHz using the proposed method
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and lumped model. A comparison of sample frequency response
corresponding to signal and victim lines is given in Fig. 6. As
seen, the response obtained using the proposed approach is in-
distinguishable from the exact response. The transient response
of the entire nonlinear network for a trapezoidal input pulse
with a 0.1-ns rise/fall time, 0.8-ns pulsewidth, and a 2-ns pe-
riod is shown in Fig. 7. The efficiency of the proposed method
is shown in Table I. It is to be noted that, the savings achieved
using the proposed macromodel is higher for longer lines and if
the macromodels are to match larger bandwidths.

Example 3: A distributed interconnect network with fre-
quency-dependent parameters is considered in Fig. 8. The
interconnect dimensions are shown in Fig. 9. The corre-
sponding per-unit-length parameters were computed using
OPTEMID1 and are listed in Table II. The values ofand
were fitted to a positive-real rational matrix, as described in
[10]. The frequency response of the linear subnetwork (Fig. 10)
is obtained by applying a voltage source at node V1. The
proposed method (order 10/10) matches the exact frequency
response up to 9 GHz. Fig. 11 shows the transient response of
the entire nonlinear circuit corresponding to a 5-V trapezoidal
input pulse with 0.1-ns rise/fall times, 4.8-ns pulsewidth, and a
10-ns period.

VII. CONCLUSIONS

In this paper, a general class of passive macromodeling algo-
rithm for multiport distributed interconnects has been presented.
The proposed approach is based on matrix-rational approxima-
tion of exponential functions describing the Telegrapher’s equa-
tions. A new theorem is described that specifies the necessary
conditions for any matrix-rational approximation of exponen-
tial functions in order to generate a passive macromodel. In ad-
dition, a technique to obtain very compact passive macromodel
with predetermined coefficients, based on near-optimal approx-
imation, has been presented. The proposed model can be easily
incorporated with the recently developed passive model-reduc-
tion techniques.
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