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Abstract—This paper presents a general class of passive macro-uses the predetermined constants given by the closed-form ma-
modeling algorithm for multiport distributed interconnects. Anew  trix-rational approximation and the per-unit-length parameters
theorem is described that specifies sufficient conditions for matrix- 5 gbtain ordinary differential equations analytically.
rational approximation of exponential functions in order to gen- In this paper, a general class of passive macromodeling algo-

erate a passive macromodel. A proof is given showing that the cur- . . . . -
rently existing passive matrix-rational approximation of exponen- rithm for multiport distributed interconnects is presented. The

tial functions is a subclass of the generic approach presented in this Proposed approach is based on matrix-rational approximation
paper. In addition, a technique to obtain a compact passive macro- of exponential functions describing Telegrapher’s equations. A
model with predetermined coefficients, based on near-optimal ap- new theorem is described, which specifies the necessary condi-
proximation, is presented. The proposed model can be easily in- tions for any matrix-rational approximation of exponential func-
corporated with recently developed passive model-reduction tech- tions so as to generate a passive macromodel. Also, a proof
riques. o ) o ) is given showing that the currently existing passive matrix-ra-
Index Terms—Circuit simulation, distributed networks, high-  tjona| approximation techniques [9]-[11] for exponential func-
speed interconnects, transmission lines. tions are a subclass of the generic approach presented in this
paper.
|. INTRODUCTION In addition, a technique is described to obtain a near-optimal
. . . rational approximation for exponential functions. Near-optimal
HE phen_omenal growt.h in densny,' opgratlng speeds, ay proximations (such as minimax approximations) are able to
complexny. of mOdeF” integrated circuits has made 'meﬂ“stribute the error more evenly in a given interval and, thus,
connect analysis a requirement for all stgte-_of-the_:-art cwcg}#e able to achieve higher accuracy for equal orders when com-
simulators. Interconnect effects such as ringing, signal del red to Padé approximations. The objective is to predetermine

d_|stort|c_>n, attenuation, and _crosstalk can severgly degr coefficients of optimal rational approximations for expo-
signal integrity. Interconnections can be from various leve ntial functions, while ensuring the coefficients do not vio-

of design hierarchy, such as on-chip, packaging structur - i |
multichip modules (MCMs), printed circuit boards (PCBS)%E passivity when used to model transmission lines. These

4 backol As the f f tion i oefficients can be computedpriori and are stored. This en-
and backpianes. As the frequency of operation Increases, @ﬁes the development of the transmission-line macromodel to
length of the interconnects become a significant fraction

h i lenath d tional | d d e formulated analytically in terms of known (stored) constants
€ operaling wavelengin, and conventional lumped mo d given per-unit-length parameters. Also, the proposed model

bego[[ne ina(_jeq_uatlg n desgrillain%the interconnect perg)kr_mara% be easily incorporated with the recently developed passive
and. rf.itnsrr]:flsslon—lme bmo €ls become tnetCﬁ_ssr?rfy. In .?‘Hgdel-reduction techniques [11], [19], [20]. Numerical exam-
proximity etfects also become prominent at high equencigg, ¢ 5.0 presented to demonstrate the validity and efficiency of
and distributed models with frequency-dependent paramet 8proposed method

m:3|1_yhbe ne_edzc_iﬁ[l]—lt[ﬂ]. I tered while linking th The organization of this paper is as follows. A brief review
_'ne major difficulty usually encountered while Iinking €y o nsmission-line equations and macromodeling is given in
distributed transmission-line models and nonlinear simulat

is th bl ¢ mixed f p This is b xction . Development of the proposed generic distributed in-
IS ne problem ot mixed frequency/time. ThiS IS DECAUSE,onnect model and a new theorem, as well as its proof, is
distributed elements are usually characterized in the freque

domain where as nonlinear components such as drivers Yen in Section 1I. A new technique to obtain near-optimal
. npo! . roximation for exponential functions is described in Sec-
receivers are represented only in time domain. Several PYR;

o . ; L n IV. Section V provides a brief outline of the development
lications can be found in the literature that address this iss{le,; - time-domain macromodel. Sections VI and VII provide
[4]-{12], [16]-{20]. Approaches based on conventional lumpegly merical results and conclusions, respectively.
segmentation of transmission lines provide a brute-force '

solution to the problem of mixed frequency/time simulation.
However, these methods lead to large circuit matrices, rendering I
the simulation inefficient. A passive transmission-line macro- Distributed interconnects are described by a set of partial dif-

model based on a closed-form matrix-rational approximation féfrential equations known as Telegrapher’s equations as fol-
an exponential function was proposed in [9]-[11]. The methqggys:

. REVIEW OF TRANSMISSION-LINE MACROMODELING
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whereR € RVX¥ L € R¥X¥ C € R¥*¥, andG € R¥*¥ A. Passivity Considerations

are the per-unit-length parameters of the transmission line andh |inear n-port network with an admittance matri(s) is
are symmetri"c nonnegative definite [3], [#](z, t) € ¥ and  ¢4iq to be passive, if and only if [22]: ¥)(s*) = Y (s) for all
I(z,t) € R¥ represent the voltage and current vectors aSA\herex is the complex conjugate operator andy2s) is a
function of positionz and timet, andz) is the number coupled positive-real matrix. That is the produet[Y* (s*) + Y (s)]z >

lines. Equation (1) can be written in the Laplace domain as gni,; 41 possible values of satisfyingRe(s) > 0 and for any
exponential matrix function as arbitrary value of.

V(d, s) 4 V00, s) _ The first_conditio_n implies that the coefficients of the ra-
1(d, 5) = 10, ) (2) tional function matrix generated by the proposed macromodel
’ ’ must be real. The second condition implies, tHat) must be
where a positive-real matrix for alRe(s) > 0 sinceReal(Y (s)) =
0 -R 0 I 1/2[Y*(s*) 4+ Y(s)]. The coefficients generated by (5) are real
-G 0} E= {—C 0 } values, therefore, the first condition of the passivity definition
3) is always satisfied. The task that remains is to ensure that the
rational approximation satisfies the second condition. For this
V, Irepresentthe Laplace-domain terminal voltage and currgiifrpose, we present the following new theorem.
vectors of the multiconductor transmission line, ahés the Theorem 1: Let the rational function approximation ef be
length of the line.

Z=(D+sE)d D= [

Equation (2) does not have a direct representation in the time zj\:qisi
domain, which makes it difficult to interface with nonlinear . Qn(s) et
simulators. Several publications can be found in the literature e = On(—s) =N (7)
to address this issue [4]-[12]. In [9]-[11], a closed-form Zqi(_s)i
passive Padé model based on matrix-rational approximation is -0

suggested for modeling distributed transmission lines, Whi%v'here the polynomial) x(s) is strictly Hurwitz. If the above

provides an efficient means to address the issue of m'xggnditions are satisfied, then the rational matrix obtained by re-

frequency/time simulation. The preCt'Ve of this paper is t lacing the scalak with the matrixZ of (3) results in a passive
present a general class of algorithm that can ensure passi

f ¢ f trix-rational imat p i ﬂ%smission-line macromodel.
ot any type o matnix-rational approximation ot exponential ry,q t4m of the resulting matrix-rational approximation can

functions_. Also, we will show that the technique_provide_d i'E)e written as
[9]-[11] is a subset of the general class of passive matrix-ra-

tional approximation presented in this paper. V(d, s) V{0, s)
PP P bap Qv(-2) ~ Qx(2) ®)
I(d, s) 1(0, s)
Ill. DEVELOPMENT OF THEPROPOSEDPASSIVE DISTRIBUTED or
INTERCONNECTMACROMODEL Vid
A scalar exponential function can be approximated as a rF?N“ QN”] l (4, 8)]
tional function as Now Qo | | 1(d; 5)
N ‘ N QNu —Qle V(O, 8) (9)
QJ\T(S) ;(LS _Q]\‘El Q]\‘rzz I(O’ 8)
(s T M ) Wwhere
> pist N
=0 Qn(Z) =) aZ' (10a)
wheres = jw. If the scalars is replaced by the matri¥, then i=0
a rational matrix is obtained, which can be used to model trans- N ; i/
mission lines described by (2) as Qn, = ZQi > (1+(=1)")(ab)’ } (10b)
. i=0 -
Py (Z)e? = Qn(Z). (5) N
Qu = i | 5 (1 (~1))(@b)=""a|  (100)
whereP;(Z), Qx(Z) are polynomial matrices expressed as Niz ™ a i |2
N ‘ M ‘ ;r r
Qn(Z) =" aZ Py(Z)=> pZ. (6) Qn,, = > 51— (—1)i)(ba)(i_1)/2b} (10d)
1=0 1=0 =0 L
Once the exponential matrix of (2) is represented as rational Noorq ‘ /2
functions, ordinary differential equations can be obtained. The Qn,, =Y _ai 5 (14 (=1)")(ba)’ } (10e)
formulation of these equations are obtained analytically in terms =0 -

of predetermined constants (i.g;, ¢;) and theRLGC param- anda = R+ sL; b = G + sC.
eters. In the following section, we focus on the passivity issuesThe conditions on the scalar rational approximation repre-
of the proposed macromodel. sented by (7) in Theorem 1 essentially means the following.
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o Zeros of (7) [roots of Qn(s) ]
* Poles of (7) [roots of Qn(-s)]

If the matricesdiag(1/2H,, 0) and diag(1/2 H,, 0) are
positive real, theWr, andW®, are positive real since they are ex-
pressed in terms of congruence transformations of positive-real
matrices. Thus, to prove the passivity of the macromodel, the
rational matriced , andH, must be shown to be positive real.
For this purpose, we utilize the condition that the polynomial
Qn(s) of (7) is a strict Hurwitz polynomial. To identify if a
polynomial is a strict Hurwitz polynomial, it is separated into
even and odd parts as [23]

Fig. 1. Pole-zero distribution requirement for scalar rational approximation of
(7) in Theorem 1.

s = 0+ jw

N
Qn(s) = Z @s'
1=0

A strict Hurwitz polynomial [in this case&) x (s)] has its roots N 1

only in the left half-plane. Hence, the zeros of scalar rational Qev(s) = Z % {_ (1+ (_1)1‘)31}

approximation (7) are strictly on left half-plane. The poles of i=0 2

the rational approximation (7), which is given by the roots of N 1 o

Q n(—s), will all be on the right half-plane and are mirror im- Qopp(s) = Z G [5 (1-— (_1)1)54} (16)

ages of zeros of (7). A graphical description of the pole-zero i=0

distribution requirement for the scalar rational approximatiqhereyy (s) andQonn(s) represent the even and odd func-

represented by (7) in Theorem 1 is shown in Fig. 1. _tions ofQ v (s), respectively. The rational function formed from
Proof of Theorem 1:The passivity proof associated withie even and odd polynomials can be expressed as a continued

the above theorem is provided in terms of ifigparameter form fraction expansion. For exampiéthe order of the polynomial

of (9). Using (9), we can write is eventhe continued fraction expansion becomes

l I““)] - [Y“ Y”’] [V“)’S)] (12) Qevls) _ o - 7)
—I,s) Yoo Yol |Vws Qopp(s) . 1
where KN—28 -
Yu Y '
lyll Y12] — W, 40, (12) K18
2 2 The necessary and sufficient conditions €t (s) to be a strict
and Hurwitz polynomial are the coefficients for: = 1,2, ..., N
| _1 1 _1 must be strictly positive. This is stated in Lemma 1.
@ 5 [Qle] QNn _5 [Qle] QNn 13 Lemma 1:
L 1 1 1 1 (132) * If Qn(s) is a strict Hurwitz polynomial, then the rational
L™ 2 [@n.] @y 9 [@n.] Qi function created using the even and odd polynomials of
r1 1 1 1 (17) is an odd positive-real rational function [23].
@, |2 @] @ 9 [@x..] " @, (13b) Also, the following facts are used to prove ttf, and H,
T 1 o 1 o are positive real.
2 [Qsz] QNzl 2 [Qsz] QN21 Lemma 2:
To prove that¥; and ¥, are positive real, the matrices are * The sum of two positive-real matrices of similar dimen-
written in terms of congruent transforms as sions is positive real [24].
. 1 Lemma 3:
¥ =W, diag <§ Ha, 0) Wa » The inverse of a positive-real matrix (if the inverse exists),
. is positive real [24].
Py =W diag <_ H,, 0) W (14) It should be noted thaey (s) and Qopp(s) of (16) are
2 very similar in form toQy, , Qn,,, Qn,,, and Qy,, of
where (10b)—(10e). In fact, a relationship exists between the two
U -U forms, and we will use this relation to prove thdt, and H,
W, = [0 U} are positive-real functions. Let the rational-function formed by
U U Qrv(s) andQopp(s) be expressed as a continued fraction
v 8] | 1
o U ) QQL(?) =KNS+ T , if N = Even
- S
H,= [Qle] . QNn opb Ii]\r,18+m
Hy, = [Qsz] QN21 (15)

andU is the unity matrix. K18
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Length=5cm Length=5c¢m
3448 0 0
15 Vout g - "o 3448 o =
Wi — T _]Q.SpF L0 0 3448
2pF _
15Q I I 4976 0765 0.152(
L = |0.765 4.976 0.765| —
AAA
W L
_I_\V/ 1 [10.5pF 0.152 0.765 4.976)
InH 2pF 3
E.ZpF 150 I I c 1.082 -0.197 -0.006 oF
= W = |_0.197 1.082 -0.197|=
1 [10.5pF -0.006 -0.197 1.082 o

Fig. 2. Coupled interconnect system.

QE\Y(S) _ 1 , |f N _ Odd_ 25 ' I I I ..—:... ExactI
Qobp(s) . ¢ n 1 - - - Minimax (7/7)
N r— Ay L Pade (7/7)
KN_1S+———
IiN_23—|-. .. ol
K1S :_-"’?
157
(18 2
Sinceq  (s) is a Hurwitz polynomial, the coefficients ¢ = ?
[1 ... N] are all positive values and the rational functions in 2 1
(18) are positive real (from Lemma 1). Next, we can also express
the matrixH , using a continued fraction expansion as 0k
H,
-1\ L AWAE
= 7 o b ( b AN ) , L o L L L T
Kya+ <m\ 10+ (- -+ (r2b+(r1@)71) o : : s s : . >
if N = Even Frequency (GHz)
H, Fig. 3. Frequency response (Example 1).
—1
-1\
= <Ii1\fb+ <mv_1a+(~ -+ (robt(r1@)7Y) 1) ) ) ;
if N =0dd (29)
- . , 15 . . . .
The coefficientss; ¢ = [1 ... N]in (19) are the same as in — IFFT

(18). Sincea andb are positive-real matrices (due to the fact = = - Minimax (7/7)

that the line parameters are nonnegative matrices [3], 15]),
in (19) is also positive real (from Lemmas 2 and 3).
Next, to prove thatH, is positive real, a similar strategy

is followed. Let the rational function formed b9gv(s) and >
Qopp(s) be expressed as S 0.5¢
1 . 5
QLD(S):,WSJF 1 , if N=0dd §
Qe (s) p
N-15+ 0
KN—28+ -+
K18 -0.5F
Qopp(s) 1 o . ‘ . . . ; .
Qrv(s) 1 ’ if N'=Even 0 05 1 15 2 25 3 35 4
KNS+ T Time (ns)
KN-1St+———
KN—28+ - Fig. 4. Time-domain response (Example 1).
K18 Sinceq  (s) is a Hurwitz polynomial, the coefficients ¢ =

(20) [1... N]are all positive values and the rational functions in
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Fig. 5. Coupled interconnect system with nonlinear termination (Example 2).
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Fig. 6. Frequency response. (a) Far-end liné (5 cm). (b) Far-end line 9 = 5 cm). (c) Far-end line 14 = 15 cm). (d) Far-end line 94 = 15 cm).
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-
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Fig. 7. Time-domain response. (a) Ouput of inverte 5 cm). (b) Far-end line 1 = 5 cm). (c) Far-end line 94 = 5 cm). (d) Output of inverterd = 15
cm). (e) Far-end line 1d(= 15 cm). (f) Far-end line 94 = 15 cm).

(20) are positive real (from Lemma 1). Next, we can also expres,
the matrixH, using a continued fraction expansion as I
= |rnb+ <mv_1a+(---+(Ii2a+(mb)_1) ) ) ;

H,
if N =Even (21)

_1\ L
= KN ‘r_b ] ‘bil_l
rat <M\ ' +( +(h2a+(hl ) ) ) ) ’ The coefficients:; ¢ = [1 ... N]in (21) are the same as in
if N =0dd (20). Sincea andb are positive-real matrice#l, in (21) is also
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TABLE |
PERFORMANCE COMPARISON (EXAMPLE 2)

Interconnect Length Matrix-rational approximation Conventional lumped segmentation CPU Speed-up
ratio
# of poles CPU time for transient # of coupled CPU time for transient
analysis (seconds) sections analysis (seconds)

Scm 216 73 100 336 4.6

15cm 576 301 300 2319 7.7
e Linear Subnetwork _ _ _ _ _ _ . —» 180uwm | 90um —| 180um |=— K2
| Length=6cm Length=6cm ] 5V _ _ 25“’”
| — i V2| vout i
N I I 0.1pF relative dielectric constant = 4.4 K pt
! i e ! - T 250m

Vo = - I conductivity = 5.8¢7 S/m (copper) T
| | e— V3 v PP
vi 10082 L 1pF!
: T I : Fig. 9. Cross-sectional geometry and dimensions of microstrip (Example 3).
LlosQ 20 I
= YAV‘V L _L Av‘v‘v 1 | . . . . . .

| %l llpF| whereW (s) is a given weight function,f, g] is the interval of
! | approximation, andx (s) andpy, (s) are the polynomials of the
| 100% ——LlpFI rational function of orde/ for the denominator and ordé¥
R R, -T: ) for the numerator.

Let the rational function of (7) be expressed in terms of prod-
Fig. 8. Nonlinear circuit with frequency-dependent interconnect parameteigets of factors written as

(Example 3).
Qn(s)
positive real (from Lemmas 2 and 3). This completes the pr08f QN( 5)
of Theorem 1. N/2
H (82+I€J17 NS+ Ko, N)
[V. CLASSES OFRATIONAL APPROXIMATIONS Ne1
== , N = Even (24)
Any rational-function approximation that satisfies the condi- N/2 )
tions of Theorem 1 can be used to obtain passive macromodels H (5% = K1, NS+Fo, N)
for transmission lines. In this section, we examine the existing ~=1
passive rational approximations for exponential functions. I - Qn(s)
addition, we will present a technique to obtain near-optimal ra- @~ (—3)
tional approximation for exponential functions. (N-1)/2
. . N (s+#0,0) H (24 k1, NS+Eo, N)
A. Padé Rational Approximation _ Ne=1 N — odd
One method of obtaining the coefficients of (7) is to use a (N-1)/2 ) ’
Padé rational functionThe Padé coefficients @ can be ob- (—s+*o,0) H (82— K1, NS+Ho,N)
tained using the following closed-form relation [9]-[11], [25]: N=1 (25)
N (M 4N —)IN _ _ .
M VRN — )] s Equations (24) and (25) satisfy the form of (7). Imposing the
s _i= ] (22) constraints thato v, 1, 5 > 0forall values ofV ensures that
M (M+N - L)‘M' ‘ Qn(s) is a strict Hurwitz polynomial. Replacing = jw and
M T N)M — ) (=s) separating the rational function in terms of real and imaginary
0 parts, the minimax objective function can be written as
For the case wheNl = N, the form of (22) is that of (7) and N )
the Hurwitz condition is satisfied [26]. minmax | 3 ( Wee(wr) <COS i — Re <qJ\g ~{(wi) ))
i1 Pn, ~{ws)

B. Minimax Rational Approximation )
A compact expression for (7) can be obtained using a min- + Wim(wi) <Sinw7¢ —Im <M>> )) (26)
imax approximation. The goal is to minimize the error function PN, N(wi)

for a given interval such that _
such thatxg, n, k1, v > 0 for all values ofn. The variables

Wie(w;), Wim(w;) are the weight functions at the angular fre-
guencyw;, wherew; ranges fromf < w; < -+ < wy < g;

an(s)

is minimum (23)
pr(s)

e’ —

max Wi(s
[f, d] (s)
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4.5 T T 0.8 T T T T

— Minimax (10/10) & Exact —— Minimax (10/10) & Exact
4t - - - Lumped (80 sections) 07t - - - Lumped (80 sections)
3.5r 0.6} 1
3r i
_ _05} -
B, 2
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0.3r .
A)
A}
0.2f Y A
W
“ i\
01r - W
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
Frequency (GHz) Frequency (GHz)
(@ (b)
Fig. 10. Frequency response: (a) at node V2 and (b) at node V3.
TABLE I

PER-UNIT-LENGTH PARAMETERS (EXAMPLE 3)

F(GHz) |1e-5| le-4 |1.1e-3|l.1e-2| 0.12| 0.38| 0.76 |1.21 [ 1.94| 2.45] 3.10| 3.91 | 4.95 |6.26 |7.91 |10.0

Ry (Q2/m) | 4.6314.75| 5.24 | 6.47 [15.6 |28.1 |39.9 |50.5|63.8|71.7{80.6 [90.6 |102 |115 |129 | 145
R;x(Q/m) [0.74]0.76 | 0.55 | 0.44 [1.482.72|3.88 {4.90|6.18| 6.94| 7.80| 8.75]9.83 111.0 |12.4 | 13.9
L;(nH/m)| 337 | 335 | 285 230 | 209 | 203 {200 (199 | 197 | 197 | 196 | 195 | 195 (195 | 194 | 194
L;xy(nH/m}| 58.4| 57.2| 13.1 | 17.2 (15.0|14.4 |14.1 |13.9 {13.8|13.7]|13.7 | 13.6 {13.6 | 13.6| 13.5( 13.5

- {193 -1.53}@17 G - [o 0] Rip =Ry Ry =Ry
-1.53 193 | ™ Ly=lyn Lp=1I

It

Re(), Im() are the real and imaginary parts of the rational funder even values of., and
tion. -1

The results obtained by the minimax approximation for [QN(Z)} @n(2)
various orders and frequency ranges are then stored. Thus, (N-1)/2
the macromodel can be formed analytically in terms of stored

[@x(2)] " [ex(@)]

(predetermined) constants and the per-unit-length parameters. i=0
. (N—-1)/2
=laU-2z] |aU+2z] ] [@U-2)
V. DEVELOPMENT OF THETIME-DOMAIN MACROMODEL i=1

—1
In this section, we will briefly review the technique to realize (07U - Z)}
the macromodel of (5) in terms of ordinary differential equations NaU + 20U + 2 o8
[9]-[11]. The rational matrix of (8) can be represented in terms [(az +2)(@U+ )} (28)

of products of subsections described by the poles and zerod@fodd values ofV. Here,U represents the unity matrix and
¢ as follows: a; = x; + jy;, are complex roots fof > 0, andag is a real

root. The symbok represents the complex conjugate operation.
Converting each subsectiérno theY -parameters yields

|:QN(_Z):| 71QN(Z) Y=Y
- ]i_[/Q [QN(—Z)J - [QN(Z)J = 4550{ (a(s))_1+bii)id+xi <a(s)d+% (b(s))_1>
g ; ot o
s o] s a2 o e )

(27) (29)
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Fig. 11. Time-domain response: (a) at node Vout (output of inverter), (b) at node V2, and (c) at node V3.

for the complex pole-zero subsection and wheree is the predefined error tolerance. If the error tolerance
is not satisfied over the frequency range of interest, the order of
the macromodel can be increased.

a — d
Y1 =Yor = 57 (a() " + 5.~ (b))
a — d
Yio=Yo = _il (a(s)) 1 1 o (b(s)) (30) VI. COMPUTATIONAL RESULTS

Example 1: The coupled interconnect configuration pro-

posed in [18] is shown in Fig. 2. The frequency response
for the real pole subsection, whesg = z2 + 3/2. obtained using the minimax and Padé macromodels (order 7/7)
Since (29) and (30) is in the form of ration function, it car'® compared with the direct solution of telegrapher’s equations
be easily translated analytically to a set of ordinary differentiéfiére onwards referred by the term “exact’) in Fig. 3. The Padeé
equations using similar techniques reported in [9]-[11]. approximation deviates from the exact response after 4 GHz,

while the minimax approximation deviates after 6 GHz. To
o ) o achieve the same frequency accuracy as the minimax approxi-
A. Criteria for Selecting the Order of Approximation mation, order 10/10 is required by the Padé approximation. The

Accuracy of the proposed model depends on the order tgim;le”nt_ responze c(())gesponldmg _;oha_n mr?ut pglsle:_wnz %1';]3
the approximation §/, M). Since all the elements in (10)rlse all imes and a 0.8-ns pulsewidth is shown in Fig. 4. Bot

are computed using the predetermined coefficients and ".}hg minimax approximation and inverse fast Fourier transform

closed-form manner, the required ordé¥,(A) can be easily (IFI'E:T) reTpoers: (Tat(.:g' di K with ni
estimated using the following error criterion: Xample <. Istributed interconnect network with nine

coupled lines (Fig. 5) is analyzed using the proposed technique.
Two different cases of interconnect lengthare considered,

2 . i.e., 5 and 15 cm. The frequency response of the linear sub-
HG — (P m(2)Qn, m(2)) H <e (31) network is matched up to 8 GHz using the proposed method
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and lumped model. A comparison of sample frequency responsg]
corresponding to signal and victim lines is given in Fig. 6. As
seen, the response obtained using the proposed approach is %
distinguishable from the exact response. The transient response
of the entire nonlinear network for a trapezoidal input pulse
with a 0.1-ns rise/fall time, 0.8-ns pulsewidth, and a 2-ns pef]
riod is shown in Fig. 7. The efficiency of the proposed method

is shown in Table I. It is to be noted that, the savings achieveg,;
using the proposed macromodel is higher for longer lines and if
the macromodels are to match larger bandwidths.

Example 3: A distributed interconnect network with fre- [13]
quency-dependent parameters is considered in Fig. 8. The
interconnect dimensions are shown in Fig. 9. The corre-
sponding per-unit-length parameters were computed using?l
OPTEMID! and are listed in Table Il. The values BfandL
were fitted to a positive-real rational matrix, as described in;s
[10]. The frequency response of the linear subnetwork (Fig. 10)
is obtained by applying a voltage source at node V1. The
proposed method (order 10/10) matches the exact frequen%y]
response up to 9 GHz. Fig. 11 shows the transient response oF
the entire nonlinear circuit corresponding to a 5-V trapezoidal
input pulse with 0.1-ns rise/fall times, 4.8-ns pulsewidth, and &17]
10-ns period.

(18]
VII. CONCLUSIONS

In this paper, a general class of passive macromodeling alg@t9]
rithm for multiport distributed interconnects has been presented.

The proposed approach is based on matrix-rational approxim:fxz—o]

tion of exponential functions describing the Telegrapher’s equa-
tions. A new theorem is described that specifies the necessary
conditions for any matrix-rational approximation of exponen-ml
tial functions in order to generate a passive macromodel. In ad-
dition, a technique to obtain very compact passive macromod¢z2]
with predetermined coefficients, based on near-optimal approx-
imation, has been presented. The proposed model can be ea
incorporated with the recently developed passive model-redugy4;

tion techniques.
[25]
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